Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Diabetologia ; 67(6): 1066-1078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630142

ABSTRACT

AIMS/HYPOTHESIS: Rodent pancreas development has been described in great detail. On the other hand, there are still gaps in our understanding of the developmental trajectories of pancreatic cells during human ontogenesis. Here, our aim was to map the spatial and chronological dynamics of human pancreatic cell differentiation and proliferation by using 3D imaging of cleared human embryonic and fetal pancreases. METHODS: We combined tissue clearing with light-sheet fluorescence imaging in human embryonic and fetal pancreases during the first trimester of pregnancy. In addition, we validated an explant culture system enabling in vitro proliferation of pancreatic progenitors to determine the mitogenic effect of candidate molecules. RESULTS: We detected the first insulin-positive cells as early as five post-conceptional weeks, two weeks earlier than previously observed. We observed few insulin-positive clusters at five post-conceptional weeks (mean ± SD 9.25±5.65) with a sharp increase to 11 post-conceptional weeks (4307±152.34). We identified a central niche as the location of onset of the earliest insulin cell production and detected extra-pancreatic loci within the adjacent developing gut. Conversely, proliferating pancreatic progenitors were located in the periphery of the epithelium, suggesting the existence of two separated pancreatic niches for differentiation and proliferation. Additionally, we observed that the proliferation ratio of progenitors ranged between 20% and 30%, while for insulin-positive cells it was 1%. We next unveiled a mitogenic effect of the platelet-derived growth factor AA isoform (PDGFAA) in progenitors acting through the pancreatic mesenchyme by increasing threefold the number of proliferating progenitors. CONCLUSIONS/INTERPRETATION: This work presents a first 3D atlas of the human developing pancreas, charting both endocrine and proliferating cells across early development.


Subject(s)
Cell Differentiation , Cell Proliferation , Imaging, Three-Dimensional , Pancreas , Humans , Pancreas/embryology , Pancreas/cytology , Pancreas/metabolism , Cell Differentiation/physiology , Female , Stem Cells/cytology , Stem Cells/metabolism , Pregnancy , Insulin/metabolism
2.
EBioMedicine ; 95: 104740, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37536063

ABSTRACT

BACKGROUND: To resist the autoimmune attack characteristic of type 1 diabetes, insulin producing pancreatic ß cells need to evade T-cell recognition. Such escape mechanisms may be conferred by low HLA class I (HLA-I) expression and upregulation of immune inhibitory molecules such as Programmed cell Death Ligand 1 (PD-L1). METHODS: The expression of PD-L1, HLA-I and CXCL10 was evaluated in the human ß cell line, ECN90, and in primary human and mouse pancreatic islets. Most genes were determined by real-time RT-PCR, flow cytometry and Western blot. Activator and inhibitor of the AKT signaling were used to modulate PD-L1 induction. Key results were validated by monitoring activity of CD8+ Jurkat T cells presenting ß cell specific T-cell receptor and transduced with reporter genes in contact culture with the human ß cell line, ECN90. FINDINGS: In this study, we identify tryptophan (TRP) as an agonist of PD-L1 induction through the AKT signaling pathway. TRP also synergistically enhanced PD-L1 expression on ß cells exposed to interferon-γ. Conversely, interferon-γ-mediated induction of HLA-I and CXCL10 genes was down-regulated upon TRP treatment. Finally, TRP and its derivatives inhibited the activation of islet-reactive CD8+ T cells by ß cells. INTERPRETATION: Collectively, our findings indicate that TRP could induce immune tolerance to ß cells by promoting their immune evasion through HLA-I downregulation and PD-L1 upregulation. FUNDING: Dutch Diabetes Research Foundation, DON Foundation, the Laboratoire d'Excellence consortium Revive (ANR-10-LABX-0073), Agence Nationale de la Recherche (ANR-19-CE15-0014-01), Fondation pour la Recherche Médicale (EQ U201903007793-EQU20193007831), Innovative Medicines InitiativeINNODIA and INNODIA HARVEST, Aides aux Jeunes Diabetiques (AJD) and Juvenile Diabetes Research Foundation Ltd (JDRF).


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Animals , Mice , Humans , Tryptophan , Interferon-gamma/metabolism , Insulin-Secreting Cells/metabolism , Immune Evasion , B7-H1 Antigen , Proto-Oncogene Proteins c-akt
4.
Cells ; 11(11)2022 05 25.
Article in English | MEDLINE | ID: mdl-35681432

ABSTRACT

Cystathionine beta synthase (CBS) catalyzes the first step of the transsulfuration pathway from homocysteine to cystathionine, and its deficiency leads to hyperhomocysteinemia (HHcy) in humans and rodents. To date, scarce information is available about the HHcy effect on insulin secretion, and the link between CBS activity and the setting of type 2 diabetes is still unknown. We aimed to decipher the consequences of an inborn defect in CBS on glucose homeostasis in mice. We used a mouse model heterozygous for CBS (CBS+/-) that presented a mild HHcy. Other groups were supplemented with methionine in drinking water to increase the mild to intermediate HHcy, and were submitted to a high-fat diet (HFD). We measured the food intake, body weight gain, body composition, glucose homeostasis, plasma homocysteine level, and CBS activity. We evidenced a defect in the stimulated insulin secretion in CBS+/- mice with mild and intermediate HHcy, while mice with intermediate HHcy under HFD presented an improvement in insulin sensitivity that compensated for the decreased insulin secretion and permitted them to maintain a glucose tolerance similar to the CBS+/+ mice. Islets isolated from CBS+/- mice maintained their ability to respond to the elevated glucose levels, and we showed that a lower parasympathetic tone could, at least in part, be responsible for the insulin secretion defect. Our results emphasize the important role of Hcy metabolic enzymes in insulin secretion and overall glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Homocystinuria , Hyperhomocysteinemia , Animals , Cystathionine beta-Synthase/metabolism , Glucose , Homeostasis , Homocysteine , Homocystinuria/metabolism , Hyperhomocysteinemia/metabolism , Mice
5.
Cells ; 11(6)2022 03 08.
Article in English | MEDLINE | ID: mdl-35326375

ABSTRACT

In human type 2 diabetes, adipose tissue plays an important role in disturbing glucose homeostasis by secreting factors that affect the function of cells and tissues throughout the body, including insulin-producing pancreatic beta cells. We aimed here at studying the paracrine effect of stromal cells isolated from subcutaneous and omental adipose tissue on human beta cells. We developed an in vitro model wherein the functional human beta cell line EndoC-ßH1 was treated with conditioned media from human adipose tissues. By using RNA-sequencing and western blotting, we determined that a conditioned medium derived from omental stromal cells stimulates several pathways, such as STAT, SMAD and RELA, in EndoC-ßH1 cells. We also observed that upon treatment, the expression of beta cell markers decreased while dedifferentiation markers increased. Loss-of-function experiments that efficiently blocked specific signaling pathways did not reverse dedifferentiation, suggesting the implication of more than one pathway in this regulatory process. Taken together, we demonstrate that soluble factors derived from stromal cells isolated from human omental adipose tissue signal human beta cells and modulate their identity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Cell Line , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Stromal Cells/metabolism
6.
Gut ; 71(2): 296-308, 2022 02.
Article in English | MEDLINE | ID: mdl-33593807

ABSTRACT

OBJECTIVE: Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic ß-cells producing insulin. Both T1D patients and animal models exhibit gut microbiota and mucosa alterations, although the exact cause for these remains poorly understood. We investigated the production of key cytokines controlling gut integrity, the abundance of segmented filamentous bacteria (SFB) involved in the production of these cytokines, and the respective role of autoimmune inflammation and hyperglycaemia. DESIGN: We used several mouse models of autoimmune T1D as well as mice rendered hyperglycaemic without inflammation to study gut mucosa and microbiota dysbiosis. We analysed cytokine expression in immune cells, epithelial cell function, SFB abundance and microbiota composition by 16S sequencing. We assessed the role of anti-tumour necrosis factor α on gut mucosa inflammation and T1D onset. RESULTS: We show in models of autoimmune T1D a conserved loss of interleukin (IL)-17A, IL-22 and IL-23A in gut mucosa. Intestinal epithelial cell function was altered and gut integrity was impaired. These defects were associated with dysbiosis including progressive loss of SFB. Transfer of diabetogenic T-cells recapitulated these gut alterations, whereas induction of hyperglycaemia with no inflammation failed to do so. Moreover, anti-inflammatory treatment restored gut mucosa and immune cell function and dampened diabetes incidence. CONCLUSION: Our results demonstrate that gut mucosa alterations and dysbiosis in T1D are primarily linked to inflammation rather than hyperglycaemia. Anti-inflammatory treatment preserves gut homeostasis and protective commensal flora reducing T1D incidence.


Subject(s)
Bacteria/isolation & purification , Diabetes Mellitus, Type 1/complications , Dysbiosis/etiology , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Animals , Cytokines/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/microbiology , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Hyperglycemia/etiology , Inflammation/etiology , Intestinal Mucosa/metabolism , Mice
7.
J Biol Chem ; 297(1): 100839, 2021 07.
Article in English | MEDLINE | ID: mdl-34051232

ABSTRACT

Glucose-mediated signaling regulates the expression of a limited number of genes in human pancreatic ß-cells at the transcriptional level. However, it is unclear whether glucose plays a role in posttranscriptional RNA processing or translational control of gene expression. Here, we asked whether glucose affects posttranscriptional steps and regulates protein synthesis in human ß-cell lines. We first showed the involvement of the mTOR pathway in glucose-related signaling. We also used the surface sensing of translation technique, based on puromycin incorporation into newly translated proteins, to demonstrate that glucose treatment increased protein translation. Among the list of glucose-induced proteins, we identified the proconvertase PCSK1, an enzyme involved in the proteolytic conversion of proinsulin to insulin, whose translation was induced within minutes following glucose treatment. We finally performed global proteomic analysis by mass spectrometry to characterize newly translated proteins upon glucose treatment. We found enrichment in proteins involved in translation, glycolysis, TCA metabolism, and insulin secretion. Taken together, our study demonstrates that, although glucose minorly affects gene transcription in human ß-cells, it plays a major role at the translational level.


Subject(s)
Energy Metabolism/genetics , Glucose/pharmacology , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Protein Biosynthesis/genetics , Cell Line , Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit/metabolism , Energy Metabolism/drug effects , Humans , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Mitogen-Activated Protein Kinases/metabolism , Proprotein Convertase 1/metabolism , Protein Biosynthesis/drug effects , Puromycin/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
8.
Islets ; 13(1-2): 10-23, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33641620

ABSTRACT

During the secondary transition of rodent pancreatic development, mainly between E12.5 and E15.5 in mice, exocrine and endocrine populations differentiate from pancreatic progenitors. Here we describe an experimental system for its study in vitro. First, we show that spheres derived from dissociated E12.5 mouse pancreases differentiate within 7 days into most pancreatic exocrine and endocrine cell types, including beta cells. The proportion and spatial repartition of the different endocrine populations mirror those observed during normal development. Thus, dissociation and culture do not impair the developmental events affecting pancreatic progenitors during the secondary transition. Moreover, dissociated cells from mouse E12.5 pancreas were transduced with ecotropic MLV-based retroviral vectors or, though less efficiently, with a mixture of ALV(A)-based retroviral vectors and gesicles containing the TVA (Tumor Virus A) receptor. As an additional improvement, we also created a transgenic mouse line expressing TVA under the control of the 4.5 kB pdx1 promoter (pdx1-TVA). We demonstrate that pancreatic progenitors from dissociated pdx1-TVA pancreas can be specifically transduced by ALV(A)-based retroviral vectors. Using this model, we expressed an activated mutant of the YAP transcriptional co-activator in pancreatic progenitors. These experiments indicate that deregulated YAP activity reduces endocrine and exocrine differentiation in the resulting spheres, confirming and extending previously published data. Thus, our experimental model recapitulates in vitro the crucial developmental decisions arising at the secondary transition and provides a convenient tool to study their genetic control.


Subject(s)
Homeodomain Proteins , Insulin-Secreting Cells , Animals , Cell Differentiation , Mice , Mice, Transgenic , Organogenesis , Pancreas
9.
Sci Rep ; 10(1): 13469, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32778664

ABSTRACT

G protein-coupled receptors are seven transmembrane signaling molecules that are involved in a wide variety of physiological processes. They constitute a large protein family of receptors with almost 300 members detected in human pancreatic islet preparations. However, the functional role of these receptors in pancreatic islets is unknown in most cases. We generated a new stable human beta cell line from neonatal pancreas. This cell line, named ECN90 expresses both subunits (GABBR1 and GABBR2) of the metabotropic GABAB receptor compared to human islet. In ECN90 cells, baclofen, a specific GABAB receptor agonist, inhibits cAMP signaling causing decreased expression of beta cell-specific genes such as MAFA and PCSK1, and reduced insulin secretion. We next demonstrated that in primary human islets, GABBR2 mRNA expression is strongly induced under cAMP signaling, while GABBR1 mRNA is constitutively expressed. We also found that induction and activation of the GABAB receptor in human islets modulates insulin secretion.


Subject(s)
Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Receptors, GABA-B/genetics , Baclofen/pharmacology , Cell Line , GABA-B Receptor Agonists/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/physiology , Islets of Langerhans/physiology , Pancreas/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, GABA-B/metabolism , Signal Transduction , gamma-Aminobutyric Acid/metabolism
10.
Diabetes ; 68(4): 761-773, 2019 04.
Article in English | MEDLINE | ID: mdl-30655386

ABSTRACT

Bromodomain and extraterminal (BET) proteins are epigenetic readers that interact with acetylated lysines of histone tails. Recent studies have demonstrated their role in cancer progression because they recruit key components of the transcriptional machinery to modulate gene expression. However, their role during embryonic development of the pancreas has never been studied. Using mouse embryonic pancreatic explants and human induced pluripotent stem cells (hiPSCs), we show that BET protein inhibition with I-BET151 or JQ1 enhances the number of neurogenin3 (NEUROG3) endocrine progenitors. In mouse explants, BET protein inhibition further led to increased expression of ß-cell markers but in the meantime, strongly downregulated Ins1 expression. Similarly, although acinar markers, such as Cpa1 and CelA, were upregulated, Amy expression was repressed. In hiPSCs, BET inhibitors strongly repressed C-peptide and glucagon during endocrine differentiation. Explants and hiPSCs were then pulsed with BET inhibitors to increase NEUROG3 expression and further chased without inhibitors. Endocrine development was enhanced in explants with higher expression of insulin and maturation markers, such as UCN3 and MAFA. In hiPSCs, the outcome was different because C-peptide expression remained lower than in controls, but ghrelin expression was increased. Altogether, by using two independent models of pancreatic development, we show that BET proteins regulate multiple aspects of pancreatic development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/drug effects , Insulin-Secreting Cells/drug effects , Islets of Langerhans/drug effects , Nerve Tissue Proteins/metabolism , Proteins/antagonists & inhibitors , Animals , Azepines/pharmacology , Cell Differentiation/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Induced Pluripotent Stem Cells , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Mice , Signal Transduction/drug effects , Signal Transduction/physiology , Triazoles/pharmacology
11.
Mol Metab ; 8: 23-36, 2018 02.
Article in English | MEDLINE | ID: mdl-29233519

ABSTRACT

OBJECTIVES: Hypothalamic lipotoxicity has been shown to induce central insulin resistance and dysregulation of glucose homeostasis; nevertheless, elucidation of the regulatory mechanisms remains incomplete. Here, we aimed to determine the role of de novo ceramide synthesis in hypothalamus on the onset of central insulin resistance and the dysregulation of glucose homeostasis induced by obesity. METHODS: Hypothalamic GT1-7 neuronal cells were treated with palmitate. De novo ceramide synthesis was inhibited either by pharmacological (myriocin) or molecular (si-Serine Palmitoyl Transferase 2, siSPT2) approaches. Obese Zucker rats (OZR) were intracerebroventricularly infused with myriocin to inhibit de novo ceramide synthesis. Insulin resistance was determined by quantification of Akt phosphorylation. Ceramide levels were quantified either by a radioactive kinase assay or by mass spectrometry analysis. Glucose homeostasis were evaluated in myriocin-treated OZR. Basal and glucose-stimulated parasympathetic tonus was recorded in OZR. Insulin secretion from islets and ß-cell mass was also determined. RESULTS: We show that palmitate impaired insulin signaling and increased ceramide levels in hypothalamic neuronal GT1-7 cells. In addition, the use of deuterated palmitic acid demonstrated that palmitate activated several enzymes of the de novo ceramide synthesis pathway in hypothalamic cells. Importantly, myriocin and siSPT2 treatment restored insulin signaling in palmitate-treated GT1-7 cells. Protein kinase C (PKC) inhibitor or a dominant-negative PKCζ also counteracted palmitate-induced insulin resistance. Interestingly, attenuating the increase in levels of hypothalamic ceramides with intracerebroventricular infusion of myriocin in OZR improved their hypothalamic insulin-sensitivity. Importantly, central myriocin treatment partially restored glucose tolerance in OZR. This latter effect is related to the restoration of glucose-stimulated insulin secretion and an increase in ß-cell mass of OZR. Electrophysiological recordings also showed an improvement of glucose-stimulated parasympathetic nerve activity in OZR centrally treated with myriocin. CONCLUSION: Our results highlight a key role of hypothalamic de novo ceramide synthesis in central insulin resistance installation and glucose homeostasis dysregulation associated with obesity.


Subject(s)
Ceramides/metabolism , Hypothalamus/metabolism , Insulin Resistance , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Obesity/metabolism , Signal Transduction , Animals , Blood Glucose/metabolism , Cell Line , Cells, Cultured , Ceramides/biosynthesis , Insulin Secretion , Mice , Rats , Rats, Zucker
12.
Diabetes ; 67(3): 461-472, 2018 03.
Article in English | MEDLINE | ID: mdl-29282201

ABSTRACT

Although the mechanisms by which glucose regulates insulin secretion from pancreatic ß-cells are now well described, the way glucose modulates gene expression in such cells needs more understanding. Here, we demonstrate that MondoA, but not its paralog carbohydrate-responsive element-binding protein, is the predominant glucose-responsive transcription factor in human pancreatic ß-EndoC-ßH1 cells and in human islets. In high-glucose conditions, MondoA shuttles to the nucleus where it is required for the induction of the glucose-responsive genes arrestin domain-containing protein 4 (ARRDC4) and thioredoxin interacting protein (TXNIP), the latter being a protein strongly linked to ß-cell dysfunction and diabetes. Importantly, increasing cAMP signaling in human ß-cells, using forskolin or the glucagon-like peptide 1 mimetic Exendin-4, inhibits the shuttling of MondoA and potently inhibits TXNIP and ARRDC4 expression. Furthermore, we demonstrate that silencing MondoA expression improves glucose uptake in EndoC-ßH1 cells. These results highlight MondoA as a novel target in ß-cells that coordinates transcriptional response to elevated glucose levels.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Second Messenger Systems , Active Transport, Cell Nucleus/drug effects , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Cyclic AMP/metabolism , Exenatide , Gene Expression Regulation/drug effects , Humans , Incretins/pharmacology , Insulin Secretion , Insulin-Secreting Cells/drug effects , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Peptides/pharmacology , RNA Interference , Second Messenger Systems/drug effects , Thioredoxins/genetics , Thioredoxins/metabolism , Tissue Culture Techniques , Venoms/pharmacology
13.
Endocrinology ; 156(3): 1171-80, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25490145

ABSTRACT

The most common thyroid abnormality among Down syndrome (DS) children corresponds to a mildly elevated TSH, with T4 decreased or in the normal range and thyroid hypoplasia, from the neonatal period onward, which aggravate their mental impairment. Transgenic Dyrk1A mice, obtained by bacterial artificial chromosome engineering (mBACTgDyrk1A), have 3 copies of the Dyrk1A gene. The objective is to determine whether this transgenic Dyrk1A (Dyrk1A(+/++)) mouse is an adequate murine model for the study of thyroid dysgenesis in DS. Embryonic thyroid development from embryonic day 13.5 (E13.5) to E17.5 was analyzed in wild-type (WT) and Dyrk1A(+/++) mice by immunofluorescence with anti-Nkx2-1, anti-thyroglobulin, and anti-T4 antibodies, markers of early thyroid development, hormonogenesis, and final differentiation, respectively. The expression of transcription factors Nkx2-1, Pax8, and Foxe1 involved in thyroidogenesis were studied by quantitative RT-PCR at the same embryonic stages. We then compared the adult phenotype at 8 to 12 weeks in Dyrk1A(+/++) and WT mice for T4 and TSH levels, thyroidal weight, and histological analysis. Regarding thyroidal development, at E15.5, Dyrk1A(+/++) thyroid lobes are double the size of WT thyroids (P = .01), but the thyroglobulin stained surface in Dyrk1A(+/++) thyroids is less than a third as large at E17.5 (P = .04) and their differentiated follicular surface half the size (P = .004). We also observed a significant increase in Nkx2-1, Foxe1, and Pax8 RNA levels in E13.5 and E17.5 Dyrk1A(+/++) embryonic thyroids. Dyrk1A(+/++) young adult mice have significantly lower plasma T4 (2.4 ng/mL versus WT, 3.7 ng/mL; P = 0.019) and nonsignificantly higher plasma TSH (114 mUI/L versus WT, 73mUI/L; P = .09). In addition, their thyroids are significantly heavier (P = .04) and exhibit large disorganized regions. Dyrk1A overexpression directly leads to thyroidal embryogenetic, functional and morphological impairment. The young adult thyroid phenotype is probably a result of embryogenetic impairment. The Dyrk1A(+/++) mouse can be considered a suitable study model for thyroid dysgenesis in DS.


Subject(s)
Disease Models, Animal , Down Syndrome/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Thyroid Dysgenesis/metabolism , Thyroid Gland/embryology , Animals , Chromosomes, Artificial, Bacterial , Down Syndrome/complications , Down Syndrome/pathology , Female , Gene Expression Regulation, Developmental/physiology , Humans , Mice , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Thyroid Dysgenesis/complications , Thyroid Dysgenesis/genetics , Dyrk Kinases
14.
Cell Cycle ; 13(14): 2221-9, 2014.
Article in English | MEDLINE | ID: mdl-24870561

ABSTRACT

Type 2 diabetes is caused by a limited capacity of insulin-producing pancreatic ß cells to increase their mass and function in response to insulin resistance. The signaling pathways that positively regulate functional ß cell mass have not been fully elucidated. DYRK1A (also called minibrain/MNB) is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family. A significant amount of data implicates DYRK1A in brain growth and Down syndrome, and recent data indicate that Dyrk1A haploinsufficient mice have a low functional ß cell mass. Here we ask whether Dyrk1A upregulation could be a way to increase functional ß cell mass. We used mice overexpressing Dyrk1A under the control of its own regulatory sequences (mBACTgDyrk1A). These mice exhibit decreased glucose levels and hyperinsulinemia in the fasting state. Improved glucose tolerance is observed in these mice as early as 4 weeks of age. Upregulation of Dyrk1A in ß cells induces expansion of ß cell mass through increased proliferation and cell size. Importantly, mBACTgDyrk1A mice are protected against high-fat-diet-induced ß cell failure through increase in ß cell mass and insulin sensitivity. These studies show the crucial role of the DYRK1A pathway in the regulation of ß cell mass and carbohydrate metabolism in vivo. Activating the DYRK1A pathway could thus represent an innovative way to increase functional ß cell mass.


Subject(s)
Blood Glucose/metabolism , Cell Proliferation , Insulin-Secreting Cells/enzymology , Protein Serine-Threonine Kinases/biosynthesis , Protein-Tyrosine Kinases/biosynthesis , Animals , Biomarkers/blood , Cell Size , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/prevention & control , Diet, High-Fat , Genotype , Hyperinsulinism/blood , Hyperinsulinism/enzymology , Hyperinsulinism/genetics , Insulin/blood , Insulin-Secreting Cells/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Signal Transduction , Time Factors , Up-Regulation , Dyrk Kinases
15.
J Clin Invest ; 124(5): 2087-98, 2014 May.
Article in English | MEDLINE | ID: mdl-24667639

ABSTRACT

Diabetic patients exhibit a reduction in ß cells, which secrete insulin to help regulate glucose homeostasis; however, little is known about the factors that regulate proliferation of these cells in human pancreas. Access to primary human ß cells is limited and a challenge for both functional studies and drug discovery progress. We previously reported the generation of a human ß cell line (EndoC-ßH1) that was generated from human fetal pancreas by targeted oncogenesis followed by in vivo cell differentiation in mice. EndoC-ßH1 cells display many functional properties of adult ß cells, including expression of ß cell markers and insulin secretion following glucose stimulation; however, unlike primary ß cells, EndoC-ßH1 cells continuously proliferate. Here, we devised a strategy to generate conditionally immortalized human ß cell lines based on Cre-mediated excision of the immortalizing transgenes. The resulting cell line (EndoC-ßH2) could be massively amplified in vitro. After expansion, transgenes were efficiently excised upon Cre expression, leading to an arrest of cell proliferation and pronounced enhancement of ß cell-specific features such as insulin expression, content, and secretion. Our data indicate that excised EndoC-ßH2 cells are highly representative of human ß cells and should be a valuable tool for further analysis of human ß cells.


Subject(s)
Cell Line, Transformed/cytology , Cell Proliferation , Insulin-Secreting Cells/cytology , Animals , Cell Line, Transformed/metabolism , Gene Expression Regulation/physiology , Humans , Insulin/biosynthesis , Insulin-Secreting Cells/metabolism , Mice
16.
Diabetologia ; 57(5): 960-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24477974

ABSTRACT

AIMS/HYPOTHESIS: Growth factors and nutrients are important regulators of pancreatic beta cell mass and function. However, the signalling pathways by which these factors modulate these processes have not yet been fully elucidated. DYRK1A (also named minibrain/MNB) is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family that has been conserved across evolution. A significant amount of data implicates DYRK1A in brain growth and function, as well as in neurodegenerative processes in Alzheimer's disease and Down's syndrome. We investigated here whether DYRK1A would be an attractive candidate for beta cell growth modulation. METHODS: To study the role of DYRK1A in beta cell growth, we used Dyrk1a-deficient mice. RESULTS: We show that DYRK1A is expressed in pancreatic islets and provide evidence that changes in Dyrk1a gene dosage in mice strongly modulate glycaemia and circulating insulin levels. Specifically, Dyrk1a-haploinsufficient mice show severe glucose intolerance, reduced beta cell mass and decreased beta cell proliferation. CONCLUSIONS/INTERPRETATION: Taken together, our data indicate that DYRK1A is a critical kinase for beta cell growth as Dyrk1a-haploinsufficient mice show a diabetic profile.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Insulin-Secreting Cells/cytology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Cell Proliferation , Haploinsufficiency , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Male , Mice , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Signal Transduction , Dyrk Kinases
17.
J Cell Sci ; 126(Pt 8): 1763-72, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23444380

ABSTRACT

Patients with myotonic dystrophy type 1 exhibit a diversity of symptoms that affect many different organs. Among these are cognitive dysfunctions, the origin of which has remained elusive, partly because of the difficulty in accessing neural cells. Here, we have taken advantage of pluripotent stem cell lines derived from embryos identified during a pre-implantation genetic diagnosis for mutant-gene carriers, to produce early neuronal cells. Functional characterization of these cells revealed reduced proliferative capacity and increased autophagy linked to mTOR signaling pathway alterations. Interestingly, loss of function of MBNL1, an RNA-binding protein whose function is defective in DM1 patients, resulted in alteration of mTOR signaling, whereas gain-of-function experiments rescued the phenotype. Collectively, these results provide a mechanism by which DM1 mutation might affect a major signaling pathway and highlight the pertinence of using pluripotent stem cells to study neuronal defects.


Subject(s)
Embryonic Stem Cells/cytology , Myotonic Dystrophy/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Cell Line , Cell Proliferation , Cellular Senescence/genetics , Cellular Senescence/physiology , Electrophoresis, Polyacrylamide Gel , Humans , Immunohistochemistry , In Situ Hybridization , Myotonic Dystrophy/genetics , Real-Time Polymerase Chain Reaction , TOR Serine-Threonine Kinases/genetics
18.
Diabetes ; 62(5): 1646-55, 2013 May.
Article in English | MEDLINE | ID: mdl-23423564

ABSTRACT

Transplantation of adult pancreatic islets has been proposed to cure type 1 diabetes (T1D). However, it is rarely considered in the clinic because of its transient effect on disease, the paucity of donors, and the requirement for strong immunosuppressive treatment to prevent allogeneic graft rejection. Transplantation of fetal pancreases (FPs) may constitute an attractive alternative because of potential abundant donor sources, possible long-term effects due to the presence of stem cells maintaining tissue integrity, and their supposed low immunogenicity. In this work, we studied the capacity of early FPs from mouse embryos to develop into functional pancreatic islets producing insulin after transplantation in syngeneic and allogeneic recipients. We found that as few as two FPs were sufficient to control T1D in syngeneic mice. Surprisingly, their development into insulin-producing cells was significantly delayed in male compared with female recipients, which may be explained by lower levels of prolactin in males. Finally, allogeneic FPs were rapidly rejected, even in the context of minor histocompatibility disparities, with massive graft infiltration with T and myeloid cells. This work suggests that FP transplantation as a therapeutic option of T1D needs to be further assessed and would require immunosuppressive treatment.


Subject(s)
Diabetes Mellitus, Type 1/prevention & control , Embryo, Mammalian , Fetus , Pancreas Transplantation/methods , Prolactin/therapeutic use , Transplantation, Heterotopic/methods , Animals , Cell Differentiation , Crosses, Genetic , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Female , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Islets of Langerhans Transplantation/immunology , Islets of Langerhans Transplantation/methods , Islets of Langerhans Transplantation/pathology , Kidney , Male , Mice , Mice, Knockout , Mice, Nude , Mice, Transgenic , Pancreas Transplantation/immunology , Pancreas Transplantation/pathology , Sex Characteristics , Specific Pathogen-Free Organisms , Transplantation, Heterotopic/immunology , Transplantation, Heterotopic/pathology , Transplantation, Homologous , Transplantation, Isogeneic
19.
Stem Cells Transl Med ; 2(1): 61-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23283495

ABSTRACT

It is well-established that insulin-producing pancreatic beta cells are central in diabetes. In type 1 diabetes, beta cells are destroyed by an autoimmune mechanism, whereas in type 2 diabetes, there is a decrease in functional beta-cell mass. In this context, studying beta cells is of major importance. Beta cells represent only 1% of total pancreatic cells and are found dispersed in the pancreatic gland. During the past decades, many tools and approaches have been developed to study rodent beta cells that efficiently pushed the field forward. However, rodent and human beta cells are not identical, and our knowledge of human beta cells has not progressed as quickly as our understanding of rodent beta cells. We believe that one of the reasons for this inefficient progress is the difficulty of accessing unlimited sources of functional human pancreatic beta cells. The main focus of this review concerns recent strategies to generate new sources of human pancreatic beta cells.


Subject(s)
Insulin-Secreting Cells/physiology , Animals , Cell Differentiation , Cells, Cultured , Diabetes Mellitus/pathology , Diabetes Mellitus/therapy , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Pancreas/pathology , Regenerative Medicine
20.
Diabetes ; 61(2): 409-17, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22210321

ABSTRACT

Leucine (Leu) is an essential branched-chain amino acid, which activates the mammalian target of rapamycin (mTOR) signaling pathway. The effect of Leu on cell differentiation during embryonic development is unknown. Here, we show that Leu supplementation during pregnancy significantly increased fetal body weight, caused fetal hyperglycemia and hypoinsulinemia, and decreased the relative islet area. We also used rat embryonic pancreatic explant culture for elucidating the mechanism of Leu action on ß-cell development. We found that in the presence of Leu, differentiation of pancreatic duodenal homeobox-1-positive progenitor cells into neurogenin3-positive endocrine progenitor cells was inefficient and resulted in decreased ß-cell formation. Mechanistically, Leu increases the intracellular levels of hypoxia-inducible factor 1-α, a repressor of endocrine fate in the pancreas, by activating the mTOR complex 1 signaling pathway. Collectively, our findings indicate that Leu supplementation during pregnancy could potentially increase the risk of type 2 diabetes mellitus by inhibiting the differentiation of pancreatic endocrine progenitor cells during a susceptible period of fetal life.


Subject(s)
Cell Differentiation/drug effects , Insulin-Secreting Cells/drug effects , Leucine/administration & dosage , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/analysis , Dietary Supplements , Female , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/physiology , Nerve Tissue Proteins/analysis , Pregnancy , Rats , Rats, Wistar , Sirolimus/pharmacology , Stem Cells/drug effects , Trans-Activators , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...